
REKAYASA
PERANGKAT LUNAK

Lecturer Team for Even Semester Year 2019-2020:

Hetti Hidayati

Reza Budiawan

Only for academic purpose at Diploma of Application of Software Engineering, School of Applied Science, Telkom University

Rules

1. Presence’s Tapping:
a) At the beginning

b) After 1 hour of the class

2. Tardiness tolerance: 15 minutes

3. Uniform rule: based on Tel-U’s rule about uniform

4. Total minimal presences: 75%

5. There is a quiz for every meeting except for assessment or presentation
schedule’s meeting.

6. All acts of cheating will get an E grade

RESOURCES

This Presentation Covers:

1. Software Process Structure
a) Generic Process

b) Process Flow

2. Process Model
a) Prescriptive Process Models: Waterfall, Incremental, Evolutionary (Prototyping &

Spiral), concurrent models

b) Specialized Process Models: Component-based development, The Formal Method
Model, Aspect-Oriented Software Development,

c) The Unified Process

d) Product & Process

SOFTWARE PROCESS
STRUCTURE

Software Engineering

This Presentation Covers:

1. Software Process Structure
a) Generic Process

b) Process Flow

2. Process Model
a) Prescriptive Process Models: Waterfall, Incremental, Evolutionary (Prototyping &

Spiral), concurrent models

b) Specialized Process Models: Component-based development, The Formal Method
Model, Aspect-Oriented Software Development,

c) The Unified Process

d) Product & Process

Definition
• What is it? a road map that helps you create a timely, high-quality result. The road

map that you follow is called a “software process.”

• Who does it? Software engineers and their managers adapt the process to their
needs and then follow it.

• Why is it important? Because it provides stability, control, and organization to an
activity that can, if left uncontrolled, become quite chaotic.

• What are the steps? At a detailed level, the process that you adopt depends on
the software that you’re building.

• What is the work product? Programs, documents, and data that are produced

• How do I ensure that I’ve done it right? There are a number of software process
assessment. Quality, timeliness, and long-term viability of the product you build
are the best indicators of the efficacy of the process that you use.

Process VS Software Engineering

A software process defines the
approach that is taken as
software is engineered

Software engineering also
encompasses technologies that
populate the process—technical
methods and automated tools

SOFTWARE
PROCESS

• Each framework activity is populated by
a set of software engineering actions.

• Each software engineering action is
defined by a task set that identifies the
work tasks that are to be completed, the
work products that will be produced, the
quality assurance points that will be
required, and the milestones that will be
used to indicate progress.

Generic Process

• A generic process framework for software engineering defines five framework
activities—communication, planning, modeling, construction, and deployment.

• Besides, it supports by a set of umbrella activities—project tracking and control,
risk management, quality assurance, configuration management, technical
reviews.

• One important aspect of the software process has not yet been discussed: process
flow.

Process Flow

• Describes how the framework activities and the actions and tasks that occur
within each framework activity are organized with respect to sequence and time.

• Categories:
• A linear process flow

• An iterative process flow

• An evolutionary process flow

• A parallel process flow

PROCESS FLOW

PROCESS
FLOW

Process Pattern

• A process pattern describes a process-related problem that is encountered
during software engineering work, identifies the environment in which the
problem has been encountered, and suggests one or more proven solutions to
the problem.

• A process pattern provides you with a template—a consistent method for
describing problem solutions within the context of the software process.

Process Pattern Content

• Pattern Name

• Intent

• Initial Context

• Problem

• Solution

• Resulting Context

• Related Pattern

• Known Uses & Examples

Example of Process Pattern

PROCESS MODEL

This Presentation Covers:

1. Software Process Structure
a) Generic Process

b) Process Flow

2. Process Model
a) Prescriptive Process Models: Waterfall, Incremental, Evolutionary (Prototyping &

Spiral), concurrent models

b) Specialized Process Models: Component-based development, The Formal Method
Model, Aspect-Oriented Software Development,

c) The Unified Process

d) Product & Process

Definition

• What is it? A process model provides a specific roadmap for software engineering
work.

• Who does it? Software engineers and their managers adapt a process model to
their needs and then follow it.

• Why is it important? Because process provides stability, control, and organization
to an activity that can, if left uncontrolled, become quite chaotic.

• What are the steps? The process model provides you with the “steps” you’ll need
to perform disciplined software engineering work.

• What is the work product? A customized description of the activities and tasks
defined by the process.

PROCESS MODEL
Prescriptive Process Model

This Presentation Covers:

1. Software Process Structure
a) Generic Process

b) Process Flow

2. Process Model
a) Prescriptive Process Models: Waterfall, Incremental, Evolutionary (Prototyping &

Spiral), concurrent models

b) Specialized Process Models: Component-based development, The Formal Method
Model, Aspect-Oriented Software Development,

c) The Unified Process

d) Product & Process

PRESCRIPTIVE PROCESS MODELS

• A prescriptive process model strives for structure and order in software
development.

• Activities and tasks occur sequentially with defined guidelines for progress.

• It is called “prescriptive” because they prescribe a set of process elements—
framework activities, software engineering actions, tasks, work products, quality
assurance and change control mechanisms for each project.

The Waterfall Model
• The waterfall model, sometimes called the classic life cycle, suggests a

systematic, sequential approach to software development that begins with
customer specification of requirements and progresses through planning,
modeling, construction, and deployment, culminating in ongoing support of the
completed software.

• It is applied when the requirements for a problem are well understood—work
flows from communication through deployment in a reasonably linear.

The Waterfall Model
Variant: V Model

There is no fundamental
difference between the
classic life cycle and the V-
model.

The V-model provides a way
of visualizing how
verification and validation
actions are applied to earlier
engineering work.

Incremental Process Models

• The incremental model combines the elements’ linear and parallel process flows.

• The incremental model applies linear sequences in a staggered fashion as calendar
time progresses

• Condition: there may be a compelling need to provide a limited set of software
functionality to users quickly and then refine and expand on that functionality in
later software releases.

Incremental Process Models Example

1st increment

• basic file
management,

• editing, and

• document
production

2nd increment

• more
sophisticated
editing and
document
production
capabilities

3rd increment

• spelling and
grammar
checking

4th increment

• advanced
page layout
capability

Evolutionary Process Models

• Evolutionary models are iterative. They are characterized in a manner that
enables you to develop increasingly more complete versions of the software.

• It applied for condition: tight market deadlines make completion of a
comprehensive software product impossible, but a limited version must be
introduced to meet competitive or business pressure; a set of core product or
system requirements is well understood, but the details of product or system
extensions have yet to be defined.

• two common evolutionary process models:
• Prototyping

• The Spiral Model

Evolutionary Process Models: Prototyping

• A customer defines a set of general objectives for software, but does not identify
detailed requirements for functions and features.

• The developer may be unsure of the efficiency of an algorithm, the adaptability
of an operating system, or the GUI form.

• Regardless of the manner in which it is applied, the prototyping paradigm assists
you and other stakeholders to better understand what is to be built when
requirements are fuzzy.

EVOLUTIONARY
PROCESS
MODELS:

PROTOTYPING

Problem of Prototyping

• Stakeholders cry foul and demand that “a few fixes” be applied to make the
prototype a working product.

• As a software engineer, you often make implementation compromises in order to
get a prototype working quickly.

• An inefficient algorithm may be implemented simply to demonstrate capability.
After a time, you may become comfortable with these choices and forget all the
reasons why they were inappropriate.

Evolutionary Process Models: Spiral

• The spiral model is an evolutionary software process model that couples the
iterative nature of prototyping with the controlled and systematic aspects of the
waterfall model.

• A spiral model is divided into a set of framework activities defined by the software
engineering team.

• Unlike other process models that end when software is delivered, the spiral
model can be adapted to apply throughout the life of the computer software.

• The spiral model is a realistic approach to the development of large-scale
systems and software.

EVOLUTIONARY
PROCESS

MODELS: SPIRAL

Problem of Spiral

• It may be difficult to convince customers (particularly in contract situations) that
the evolutionary approach is controllable.

• It demands considerable risk assessment expertise and relies on this expertise for
success.

• If a major risk is not uncovered and managed, problems will undoubtedly occur.

Concurrent Model

• The concurrent development model, sometimes called concurrent engineering,
allows a software team to represent iterative and concurrent elements.

• Concurrent modeling defines a series of events that will trigger transitions
from state to state for each of the software engineering activities, actions, or
tasks.

• Concurrent modeling is applicable to all types of software development and
provides an accurate picture of the current state of a project

CONCURRENT
MODEL

One element of the concurrent
process model

PROCESS MODEL
Specialized Process Model

This Presentation Covers:

1. Software Process Structure
a) Generic Process

b) Process Flow

2. Process Model
a) Prescriptive Process Models: Waterfall, Incremental, Evolutionary (Prototyping &

Spiral), concurrent models

b) Specialized Process Models: Component-based development, The Formal Method
Model, Aspect-Oriented Software Development,

c) The Unified Process

d) Product & Process

Specialized Process Model

• Specialized process models take on many of the characteristics of one or more of
the traditional models presented in the preceding sections.

• In some cases, these specialized process models might better be characterized as
a collection of techniques or a “methodology” for accomplishing a specific
software development goal. However, they do imply a process.

Component-Based Development

• The component-based development model incorporates many of the
characteristics of the spiral model.

• Modeling and construction activities begin with the identification of candidate
components.

• These components can be designed as either conventional software
modules or object-oriented classes or packages11 of classes.

Steps of Component-Based Development

a) Available component-based products are researched and evaluated for the
application domain in question

b) Component integration issues are considered

c) A software architecture is designed to accommodate the components.

d) Components are integrated into the architecture.

e) Comprehensive testing is conducted to ensure proper functionality

The Formal Methods Model

• The formal methods model encompasses a set of activities that leads to formal
mathematical specification of computer software.

• Formal methods enable you to specify, develop, and verify a computer-based
system by applying a rigorous, mathematical notation.

Aspect-Oriented Software Development

• Aspect-oriented software development (AOSD), often referred to as aspect-
oriented programming (AOP) or aspect-oriented component engineering (AOCE),
is a relatively new software engineering paradigm that provides a process and
methodological approach for defining, specifying, designing, and constructing
aspects.

UNIFIED PROCESS

This Presentation Covers:

1. Software Process Structure
a) Generic Process

b) Process Flow

2. Process Model
a) Prescriptive Process Models: Waterfall, Incremental, Evolutionary (Prototyping &

Spiral), concurrent models

b) Specialized Process Models: Component-based development, The Formal Method
Model, Aspect-Oriented Software Development,

c) The Unified Process

d) Product & Process

The Unified Process

• In some ways the Unified Process is an attempt to draw on the best features and
characteristics of traditional software process models, but characterize them in a
way that implements many of the best principles of agile software development

• The Unified Process recognizes the importance of customer communication and
streamlined methods for describing the customer’s view of a system (the use case)

• It emphasizes the important role of software architecture and “helps the architect
focus on the right goals, such as understandability, reliance to future changes, and
reuse”.

THE
UNIFIED

PROCESS

PRODUCT & PROCESS

This Presentation Covers:

1. Software Process Structure
a) Generic Process

b) Process Flow

2. Process Model
a) Prescriptive Process Models: Waterfall, Incremental, Evolutionary (Prototyping &

Spiral), concurrent models

b) Specialized Process Models: Component-based development, The Formal Method
Model, Aspect-Oriented Software Development,

c) The Unified Process

d) Product & Process

Process & Product

• If the process is weak, the end product will undoubtedly suffer. But an obsessive
overreliance on process is also dangerous.

• People derive as much (or more) satisfaction from the creative process as they do
from the end product.

• As creative software professional, you should also derive as much satisfaction
from the process as the end product.

QUIZ TIME!!
Quiz 2

Quiz/Quiz 2.pptx

VIDEO TIME!!

Video Time

• Hobi VS Passion VS Profesi

• Cara supaya tidak membenci pelajaran

Hobi VS Passion VS Profesi

Tips tidak membenci pelajaran

